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Relaxation processes of the concentration fluctuations induced by a rapid pressure change were investigated
for a dynamically asymmetric polymer blefdeuterated polybutadierf®PB)/polyisoprengPI)] with a com-
position of 50-50 by weight by using time-resolved small-angle neutron scattering. The pressure change was
carried out inside the single-phase of the blend with the cell designed for polymeric systems under high
pressure and temperature. Time change in the scattered intensity distribution with wave (@rdbeing the
relaxation processes was found to be approximated by Cahn-Hilliard-Cook linearized theory. The theoretical
analysis yielded the dependence of Onsager kinetic coefficient that is characterized by thdependence
at gé,.>1 with the characteristic lengtf,. (with &, being the viscoelastic lengthbeing much larger than
radius of gyration of DPB or PI. The estimatégl. agrees well with that calculated using the Doi and Onuki
theory that takes into account the viscoelastic effects arising from the dynamical asymmetry between the
component polymers in the relaxation of concentration fluctuations.
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I. INTRODUCTION phase-separation processes are affected by internal modes
[12] at /<Ry or att<r,, while they are affected by the

The dynamics of concentration fluctuations in binary self-diffusion of each component at=R, or att=r,,. The
polymer blends has been one of the interesting researabffects of internal modes on the dynamics of polymer blends
problems in chemical physics of complex liquids. Many ex-have been experimentally studied in polystyre(feS/
perimental studies of the phase-separation processes of polyely(styreneran-4-bromostyrengblend by Strobl[13] and
mer blends have unveiled some common features betweén dPS/PS blend by Mler et al. [14].
simple-liquid mixtures and polymer blend4—4]. For ex- Even in the case whefi=Ry or t=r,, if tand/” are not
ample, the phase-separated structures of polymer blends amdry large compared with,, andRy, respectively, the nor-
simple-liquids mixtures grow with dynamical self-similarity mal modes still affect the dynamics through wave-number
in the late stage spinodal decompositi@ynamical scaling (q)-dependent translational diffusion via reptatidd]. This
concepf5-7]), and the coarsening behaviors of the two sys-would make the Onsager kinetic coefficightnonlocal and
tems, as observed by time evolution of the characteristibhenceq dependen{ A=A(q)], which is not observed in
wave number and scattered intensity at different quenchesther systems such as simple-liquid mixtures. It is expected
become universal, independent of the quench depth and thkeat the Onsager kinetic coefficient asymptotically increases
systems when the relevant physical quantities are reduced a constant valué(0) with qRy—0. de Genne$16] and
with the quench-depth-dependent characteristic parameteFincus[17] and later Bindef18] theoretically elucidated this
(Langer-Bar-on-Miller’s scaling postulai8,9]). Those com-  effect. Pincug17] predicted that the Onsager kinetic coeffi-
mon features described above are mainly found with expericients obeys| 2 atqR,=1 with R, beingR for “symmet-
ments using light scattering or optical microscope experitic” polymer blends(we will show the exact expression of
ments, where the observed length scédland time scalé  the theory in Sec. I)l According to the theoryA(q) be-
are very much larger than the radius of gyratid®,X and comes effectively constant, satisfying(q)/A(0)=0.95,
characteristic timéthe longest relaxation time,, [10,11) of ~ when qR;=<0.33 for the symmetric blends. Here the sym-
polymers. metric blends denote that each component in polymer blends

If we observe the dynamics in polymer blends at thehas an identical polymerization indéx and self-diffusion
length scale close t&, by using small-angle neutron scat- coefficientDs.
tering (SANS) or small-angle x-ray scatteringAXS), some Several experimental works investigated thedepen-
unique features, which are not relevant to small-moleculadence of the Onsager kinetic coefficient by analyzing the
systems, appear in the dynamics of phase-separation prdynamics of early stage spinodal decomposition in the con-
cesses. This is because linear flexible polymers have martgxt of Pincus's[17] and Binder’s[18] theory. Jinnaiet al.
internal degrees of freedom and hence internal modes of v[-19] investigated the dynamics of the early stage spinodal
brations[10,11. These modes should affect the dynamics atdecomposition of the nearly symmetric deuterated polybuta-
the length scale of the observatighsatisfying/’<R, or at  diene(DPB)/polybutadiengPB) blend and determined the
the time scald shorter thanr,, [10,11. One unique feature dependence of the Onsager kinetic coefficients. According to
related to this is theoretically explored by Akcdsi?]: the  their study, theq dependence of the Onsager kinetic coeffi-
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cient is well expressed by the Pincus theory but the estimated TABLE I. Characterization of polymers used in this study
R, is about twice as large a@y's of DPB or PB. Miller

et al.[14] also found ther,, /Ry=2 for the nearly symmetric Unperturbed
dPS/PS blend. In both cases if the theory is corr&y, _ Molar volume  radius of
should be equal &, Sample M,, (units of monomer unit ggratlon
) —4 c
As for asymmetric blends in which each component in ¢0de  of 107 My/M, v (cm’/mol) Rg (mm)
blends has differenD¢’s, Schwahn, Janssen, and Springer ppg 37.4 128 60.4 21.0
[20] found theR, /Ry is about 5 to 7 on the basis of the p, 8. 110 756 9.5

analysis described above for the dPS/palyyl methyl
ethe) (PVME) blend. Kawasaki and Kogf1] suggested apetermined with gel permeation chromatography with light scat-
that this largeR, originates from the dynamical coupling tering.

betWeen diﬁusion and stress that iS prediCted as “Viscoelastiqjetermined with ge| permeation Chromatography calibrated by
ef'feCtS" by DO| and Onuk|[22,23 (DO) According to the po|yisoprene standard Samp|esl

DO theory, the stress relaxation governs the dynamics of thg = /p, whereM, andp are, respectively, molecular weight of
concentration fluctuations at shorter than a certain charac- monomer and density0.899 g/cn for Pl and 0.985 g/crhfor
teristic length¢,. defined as “viscoelastic length,” and the ppp).

Onsager kinetic coefficient hag ? dependence ajé,>1. “R, are obtained with unperturbed chain parameters from the vis-
&.e increases with asymmetry in polymerization indices andcoelastic measuremej#t0]. We used the unperturbed chain param-
self-diffusion coefficients of the component polymers andeters of polybutadiene to estima&g of DPB.

can be much larger thaRy andR, .

The aim of this paper is to explore the effects of the|ecular weight, respectively. The two polymers have different
dynamical coupling between diffusion and stress on the remolecular weight: molecular weight ratio and molar volume
laxation processes of the concentration fluctuations of dyratio of DPB and Pl are 4.40 and 4.42, respectively. The
namically asymmetric polymer blends within their one phasecomposition of a DPB/PI mixture studied was 50-50 by
region. We focus on the long time relaxation processes whergeight. The DBP/PI blend has a lower-critical-solution-
the Onsager kinetic coefficient should begandependent temperature-type phase diagram and the spinodal tempera-
constant valué\(0), if the viscoelastic effects do not play an tyre atP=0.1 MPa is 314.2 K.
important role. In order to test the validity of the DO theory,  The DPB/PI blend was dissolved into a homogeneous so-
we will estimate theq dependence of the Onsager kinetic Jution with toluene in which total weight fraction of the poly-
coefficient by analyzing the relaxation process with Cahnmers are 0.1. The film specimen of the blend was obtained
Hilliard-Cook (CHC) theory[24,25 and compare the experi- by evaporating the solvent slowly at room temperature. The
mental value of,. with that estimated by the DO theory.  film was further dried in vacuum for 24 h at room tempera-

The blend samples and the experimental techniques usedre, and then molded into the disk with 1-cm diameter and
in this study are described in Sec. Il. We will first show 2-mm thickness for the SANS experiment. We installed the
equilibrium structure factors for the blend in a single-phasemolded sample into the cell that is specially designed for the
state at a given temperature as a function of pressure arglANS measurement under high press(up to 200 MPa
then characterize the pressure changes employed in thighd high temperatur&ip to 523 K. The details of the cell
study in order to induce the relaxation of the concentratiorfor high pressure and temperature are described elsewhere
fluctuations in Sec. llIA. In Sec. llI B, we will present the [26]. The SANS experiments were performed with SANS-U
experimental results on the time changes in the structure fagf the Institute for Solid State Physics of the University of
tors during the relaxation processes of the concentration flucfokyo at JRR-3M reactor at Japan Atomic Energy Research
tuations induced by the pressure change and analyze the dagstitute in Tokai. The neutron wavelengihused here was
by using the CHC theory. We will discuss the viscoelastic.8 and 0.72 nm for the experiment at 298.1 and at 309.0 K,
effects on theq dependence of the Onsager kinetic coeffi-respectively, but the sample-to-detector distance was fixed to
cient estimated by the CHC theory in Sec. Ill C. The Onsagen2 m. All measured intensities were circularly averaged and
kinetic coefficient thus evaluated will be compared with caglibrated into the absolute intensitgm ! unit) with the
those predicted by the theories in Sec. 11 D. In Sec. Il E, weincoherent scattering for Lupolene® after the correction of
will compare the viscoelastic lengje.cp0btained from the  the electrical background noise, the sample transmittance,
relaxation experiments with thd{e.ieory, €Stimated by using  the scattering of an empty cell.
the DO theory. The parameters required for estimating We measured the pressure dependence of the SANS in-
&ve-theory WeTE ODbtained from viscoelastic data. Finally, we tensity atT=298.1 and 309.0 K in order to investigate the
will summarize our results in Sec. IV. pressure dependence of the Flory-Huggins segmental inter-
action parametely between DPB and Pl. The pressure
used here is 0.1, 20.0, 40.0, 60.0, and 80.0 MPa at 298.1 and
0.1, 20.0, 40.0, 60.0, and 100.0 MPa at 309.0 K. For this

The DPB and polyisoprené®l) used in this study were purpose, SANS scattered intensity distribution was measured
synthesized by living anionic polymerization. The characterfor 30 min at each temperature and at each pressure.
ization of DPB and PI are listed in Table |, wheké, and We took the following procedure to measure the time
M,, designate number-averaged and weight-averaged mahanges in the scattered intensity distribution induced by

Il. EXPERIMENTAL SECTION
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pressure changéhereafter defined as “quenchfrom 80.0

to 0.1 MPa at 298.1 K and from 100.0 to 0.1 MPa at 309.0 . p

K: for example, in the former quench, the sample was first foae, e 0.1MPa

equilibrated at 298.1 K and 80.0 MPa for 30 min before the 10° "ﬁ;ZEEEEE;-. 0 20.0MPa
LT m 40.0MPa

SANS measurement. The sample was then quenched from .~ L A 60.0MPa

80.0 to 0.1 MPa at 298.1 K, followed by a time-resolved  § gl s 80.0MPa

SANS measurement as a function of titefter the comple- G ‘g'ﬁﬁi,ﬁ. . T=2081K

tion of the quench. The data acquisition during the relaxation & ’ ‘iﬂiaﬁhi

process was implemented at 50 different time slices, each ’ lﬁ‘m’iiieii ,

slice being obtained for data-acquisition time of 20 s. Since . sy

each time-sliced scattered intensity distributi&(q,t;), 10°¢

thus obtained had a poor statistical accuracy, for a further

guantitative analysis of it, we repeated the quench experi- 0.4 06 08 10 12 14 16 18 20
ment over 20 times in order to obtain a signal-average scat-

tered intensity distributiors(q,t;) q (10"nm)

FIG. 1. Pressure dependence of the equilibrium scattering func-

N
1 tion Sg(q) at 298.1 K plotted as a function of
si@t)= 2, S(at). & .
kyy=Np| 228 22! (4)
where N is the number of the repeated relaxation experi- NT A vpps R

ments (N=20 in this experiment subscriptj denotesjth
relaxation experiment, ant] is theith time slice in each andS$(q) is the structure factor forth component polymer
relaxation experiment. In order to avoid some artifacts in-(i=DPB or P) given by
volved by the signal-average process in each relaxation ex-
periment, we confirmed the identity of the equilibrium scat- S(q)= 32
tered intensity distributions at 80.0 and 0.1 MPa at 298.1 K. i
The same experimental procedure was taken for the quench
from 100.0 to 0.1 MPa at 309.0 K. where

In order to obtain the viscosity of the blend and the self- 5 )
diffusion coefficient of each component, we carried out lin- X;=Qq°Np,ibi/6, (6)
ear viscoelastic measurements of the DPB/PI blend in its one
phase region by using RMS-800, Rheometrics® with a cone2"d
plate geometry of diameter equal to 7.90 mm and angular
frequencyw ranging from 0.002 to 100 rad/sec. The strain
amplitude used here is 2.0%. The method to evaluate botky
guantities from the linear viscoelasticity will be detailed later
in Sec. llID.

h;
—1+X

©)

x

hi=[(Ny,/Nq)—1]7%. )

ni andN,,; denote the number- and weight-averaged de-
grees of polymerization for theh component(i=DPB or
PI), respectively.a; andv; are, respectively, the scattering
length and the molar volume of monomer unit, apdthe

Ill. RESULTS AND DISCUSSIONS volume fraction for theith componentN, is Avogadro’s

A. Quench depth induced by pressure jump number, y is the Flory-Huggins interaction parameter be-

Figures 1 and 2 show the pressiiR dependence of the

equilibrium scattering functioi$,(q) at 298.1 K and 309.0 D. p
K, respectively. In the figuress,{q) is plotted as a function s, e 0.1MPa
of wave numbex defined by 10°F gt 0 20.0MPa
“i3agse m  40.0MPa
: o TR A 60.0MPa
g=(4m/N\)sin(6/2), 2) £ hﬁi%in A 100.0MPa

~ “288s,
. . _ G5 iy, T=309.0 K
where ¢ is the scattering anglé&S;(q) decreases with pres- 5 'il!“ii
UH

sure, indicating that the DPB/PI mixture has an upper-

critical-solution-pressure-type phase diagrigi]. "-‘Ei.mm
According to the scattering theory based on the random 10°F l’f

phase approximatio(RPA) [28—-30, S;(q) is expressed by

04 06 08 10 12 14 16 18 20

Sed @) B $opev ppeSppe(d) " dpvpiSp(Q) U_o

3 q(10'nm")

FIG. 2. Pressure dependence of the equilibrium scattering func-
with tion Se(q) at 309.0 K plotted as a function of
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% =7.615x10

/

(]
5r e 298.1K
= 309.0K
. . . . . . 108 —2 . + '
40 20 20 60 80 100 2 3 4 5 6
P (MPa) q (10%nm™)

FIG. 3. Estimatedy parameters plotted as a function of pressure  FIG. 5. Change in SANS scattering functi&(q,t) with time
P at 298.1 K(circles and 309.0 K(squares after the pressure jump from 80.0 to 0.1 MPa at 298.1 K.

The y decreases with pressure, indicating that the DPB/PI
mixture has the upper-critical-solution-pressure-type phase
diagram. Figure 4 shows the spinodal ligelid line) plotted

5 a function ofgppg for the DPB/PI mixture. The spinodal
Ine was calculated with

tween DPB and Pl per monomer unit, anglis the reference
cell volume defined asy=(¢pppg/vppst ¢pi/vp) .

We fitted SANS profiles with Eq3) with y andb; being
adjustable parameters. Figure 3 shows the pressure dep
dence ofy parameter thus evaluated at 298.1 and 309.0 K.

The pressure dependence)ofs given by 1

Uo
+ .
$ppev DPBNW,DPB dpp PINW,PI

Xs:?

(10

x=6.44x10 4—1.71x10 °P (MPa) at 298.1 K (8)
The ordinate axis on the right-hand side of the figure corre-
sponds to temperature at 0.1 MPa calculated from the fol-
lowing temperature dependence oft 0.1 MPa that in turn
was measured from SANS experiments on the same blend in
x=7.29<10 *-8.74x10 ‘P (MPa) at 309.0 K (9) the single-phase state at 0.1 MPa as a function of tempera-
ture:

and

1.2

y=2.69<10 4—0.606M at 0.1 MPa.  (11)

J100 The figure also includes changes in a thermodynamic state of

the blend induced by the pressure jump from 80.0 to 0.1 MPa

1.0 (squares and broken linand 100.0 to 0.1 MPa at 309.0 K

(circles and solid linpwhich are estimated from Eg&) and

(9), respectively. The pressure jumps at 289.1 K and 309.0
= K, respectively, corresponds to the jump in thevalue A y

0.81 3 =1.37x10 4 and 8.7% 10 ° or the temperature jumpT

140~ =20.1K and 13.0 K from Eq¥8), (9), and(11).

103y

oo B. Changes in structure factors with time after pressure change

0.6} . . .
Figures 5 and 6 show the changes in the scattered inten-

H sity of the DPB/PI mixtures with time after the onset of the
-2 Pump at 298,110 qguench from 80.0 to 0.1 MPa at 298.1 K aqd from 100.0 to

0 . . . o 0.1 MPa at 309.0 K, respectively. In both figures, after the
40 02 04 08 08 1.0 quench, the scattering functid®(q,t) increases with time

¢ at observed) region toward the equilibrium scattering func-
bPB tion S(q,») at 0.1 MPa. The slower growth rate of the in-

FIG. 4. Phase diagram of DPB/PI blend in the parameter spactensity is found to be at lowey region.
of x (or T at 0.1 MPa and volume fraction of DPB in the blend of ~ The dynamics of concentration fluctuationsAfB binary
DPB/PI. Solid line indicates the spinodal line of DPB/PI blend cal- mixtures is described by time-dependent Ginzburg-Landau
culated by the Flory-Huggins theory. Broken line with squares andheory. The time-evolution of-Fourier modesi¢a(q,t) for
solid line with circles represent the quench depthyidue to the  the local concentration fluctuations of componAris given
pressure jump at 298.1 K and 309.0 K, respectively. by [31-33:
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10*

S(a,t) (em™)
_O:J

10°

FIG. 6. Change in SANS scattering functi®tq,t) with time
after the pressure jump from 100.0 to 0.1 MPa at 309.0 K.

Jd
21 90a0,0 =~ A(@)a*u(a,t) +s(a,1),

whereA(q) is the Onsager kinetic coefficient(q,t) is the
local chemical potential, ang(q,t) is the random thermal

q (10'2nm'1)

12
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9=0.017 nm™(Shift +2)
A

In {{S(q,)-S(q,1)] (cm™)}
]

1 1

q=0.027 nm™" (Shift +1) |

9=0.033 nm”'

Y

0 50

100

150
t(s)

200

250

300

FIG. 7. INS(q,0)—q,t)] plotted as function of time at 298.1

K and at fixedq values. Solid lines were obtained by linear regres-

sion of data.

Though the data
In[Sq,2)—H(q,t)] andt can be found in each plot.
Figure 9 shows thg dependence dR(q) estimated from

is scattered, the

t after the onset of quench at 298.1 and 309.0 K, respectively.

linearity between

force term as expressed by the following fluctuation-the plots of 11S(q,e)—Sq,t)] vs t. In both experiments, the
R(q) increases withg. The values oR(q) at 309.0 K[Fig.
9(b)] are comparable with those at 298.1Kig. Ya)] in the

dissipation relatior}18,34:
(s(,)s(q",t"))=—2kgTA(q)q*8(t—t"),

Spa(q,t) is small, Eq.(12) can be linearized in terms of

oa(q,t):

a
1 0oaan =

A(g)q

2

 [S(a,%)/(kgTky)]

13

d¢a(q,t) +s(a,t),

observedq region, which seems to indicate that the critical

_ , slowing down is not clearly observed. This may be primarily
wherekg and T are, respectively, the Boltzman’s constant po.5use 309.0 K is not yet close enough to 314(&pinodal
and absolute temperature, afictlenotes thermal average. If yomperaturpand also because the increase in the Onsager

kinetic coefficient with temperature is dominant comparable

with the increase in S(qg,»)] with temperaturesee Eq.

(16)].

S(q,°) can be approximated by the following Ornstein-

Zernike-Debye forn{35] at qRy=<1:

(14
whereS(q,)/ky is the structure factor corresponding to the S(0,)
scattering functior(q,») is equal toSs{(q) in Eq. (3). S(q,% Em, (18)

We can solve Eq.14) and hence predict time evolution of th
the scattering functios(q,t)[ (| §¢a(a,t)|?)] [24,25. o
S(q,t)=5(q,%) +[S(q,0) - S(q,%) Jexd — 2R(q)t],

(15 . ol q=0.016 nm™'(Shift +2) |
whereS(q,0) andR(q) are, respectively$(q,t) att=0 and 5 : N - —t ]
the relaxation rate of thg-Fourier modes of the concentra- = 8f .
tion fluctuationsR(q) is expressed by = =0.030 nm’! (Shift +1)

’é\ 7+ - n - L] - 2 |

A(q) S :

R(q)=g? : 16 &
(V=9 sq, )/ (TR ] w2

= 6f . q=0.039 nm”' 1

Rearranging Eq(15), we obtain T e .

IN[S(q,%)— S(q,t)]1=IN[S(q,%) — S(q,0)]— 2R(q)t. % 50 100 150 200 250 300
(17 t(s)

Thus we can estimat®(q) from the slope of IfS(q,) FIG. 8. INS(q,<)—Sa.t)] plotted as function of time at 309.0
—5q,t)] vst plot where In here denotes natural logarithms.K and at fixedq values. Solid lines were obtained by linear regres-
In Figs. 7 and 8, Ii5(g,.2)—Y(q,t)] is plotted as a function of sion of data.
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FIG. 9. Relaxation ratdR(q) for the g-Fourier mode of the
concentration fluctuations plotted as a functiomadt (a) 298.1 K
and(b) 309.0 K.

where &y, is the correlation length of the concentration fluc-
tuations and given by

2
Vo bEN, i

UPI¢PINW,PI

2
bDPBNZ,DPB

2 _
i 36(x— xs) UDPBQ”DPBNW,DPB

(19

with N, ; beingz-averaged degrees of polymerization for the
ith component. From Eq$16) and (18), we thus obtain

, Ma)(1+0°gG)

R(D =050 1k They ]

(20

where &,=1.52x 10? and 2.73< 10? nm at 298.1 and 309.0
K, respectively. In the limit ofjR;—0, A (q) asymptotically
increases to ar-independent value\(0). In this limit, we
should have a linear relationship betweR(q)/q? vs g?
with a positive slope. In reality, as shown in Fig. B{q)/q>

vs g° decreases nonlinearly witf, i.e., the valuef(q)/q?
(shown by circles and squadeare much suppressed than
those expected from the linear relationsfag shown by the
solid lines with A(q)=A(0)] even atg® values much
smaller than Ry?, 2.27<10 *nm ? for DPB and 1.11
X 10 2nm~2 for PIl. This means that the Onsager kinetic
coefficient must have g dependence for some reasons even
at qRy=<1. We shall discuss thg dependence of Onsager
kinetic coefficient in the following section and the broken
lines predicted by the Pincus theory in Sec. llI D.

C. Q dependence of Onsager kinetic coefficient

Figure 11 shows thg dependence of the Onsager kinetic
coefficient at 298.1(squares and at 309.0 K(circles, as
estimated from Eq(16), i.e.,

R(9)[S(q,%)/(kgTkn)]

A(q)= 7 ,

(21)
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12
10}
o 8l e 309.0K
K m 298.1K
E 4l — A(Q)=A(0)
N; --- A(Q):Pincus
T 4
- H
AT TR
'*'*"l’--il==§=:=§:'—':{::::§::
80 05 10 15 2 25 30

q2 § O'Gnm'z)

FIG. 10. R(q)/g? plotted againsg? at 309.0 K(circles and
298.1 K (squares The solid lines are in the case wheidq)
=A(0)=(5.34-0.74)x 10?2 at 298.1 K and (10.80.6)x 10" 2!
at 309.0 K, and the broken lines the best-fitting results given by the
Pincus theory wittR, and A(0) given in Table .

whereR(q) was directly measured as described in Sec. 111 B
and shown in Fig. 9, an&(q,«~)/ky is the structure factor
Se{0,)/ky at each temperature given by E§). We found
that theq 2 behavior at higherq region in both quench
experiments. The broken lines predicted by Pincus theory
will be described in following section.

D. Comparison between experimental and theoretical result
for Onsager kinetic coefficient

Pincus[17] derived theq dependence of the Onsager ki-
netic coefficient for symmetric blends

1—exp(—g°R?)
N B

22
q (22)

where the characteristic lengf, in this theory is consid-
ered to be the radius of gyration of the symmetric polymers
themselves. Although the Pincus theory cannot be applied to

e at 309.0K
-21 m at298.1K
107 --- Pincus theory
—~ ..-‘h.“~
£ %i, H.
2 g g
%10-22 | f\\ f B
+|| )
0.01

q (m™

FIG. 11. Q dependence of Onsager kinetic coefficient at 298.1 K

(squaresand 309.0 K(circles. The broken lines indicates the best-
fitting results with the Pincus theof¥Eqg. (22)].
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TABLE Il. Fitting parameters with Pincus theory and Doi-Onuki theory

Pincus Doi-Onuki
Temperature A(0) Ra A(0) Eve
(K) (102mPJtsh (nm) (10Zm°Jtsh (nm)
298.1 5.350.74 67.2-8.1 6.39:1.4 64.6-12.6
309.0 10.3-0.6 71.8-3.3 14.1+1.7 76.9-7.1

our asymmetric blends in a rigorous sense, we attempted the Onsager kinetic coefficient. The effects suppress the
fit the experimental results with ER2) by usingA(0) and  transport coefficient even atR,<1 in the range ofj satis-
R, as the floating parameters. The broken lines in Figs. 18ying q¢,.=1, as discussed in detail elsewhdR$6]. The
and 11 are the best-fitting results with the fitting parametergffects are screened out @< 1.
in Table 1. Although Eq.(22) can well explain the experi- In contrast, the Pincus theory predicts the suppression of
mental results or\(q), the estimated values &, , which  the transport coefficient occurs only whger 1/Ry. This is
should be equal t&, are much larger thaR;=21.0nm for  natural because, when the component polymers are symmet-
DPB andRy=9.5nm for PI, which is similar to the result ric, the dynamical asymmetry parametergoes to zero and
obtained by Schwahn, Janssen, and Springer for dPS/PVMEenceé, . goes to zero, resulting in a complete screening of
[20]. Thus some unsolved problems are still left unveiled. Bythe viscoelastic effects. Thus the suppression of the transport
using A(q) best fitted with the Pincus theory as shown by coefficient occurs only through tteedependence of the rep-
the broken lines in Fig. 11, the nonlinear behavior oftation modes. In other words physical origin of the suppres-
R(q)/q? againstg? can be apparently explained, as shownsion is completely different. In our asymmetric blends, the
by the broken lines in Fig. 10. However, the same problem asuppression oA (q) at 1£,,<q<1/R, reflects the viscoelas-
discussed abové.e., Ry\>R,) still remains to be solved. tic effects and that atj=1/R; would be affected by the

Doi and Onuki[22] took into account dynamical coupling dependence of the reptation modes as well. Figure 13 high-
between stress and diffusion for dynamically asymmetridights the effects of\(q) on the plot ofR(q)/q?. The figure
blends and derived thg dependence of the Onsager kinetic clearly reveals that two kinds of the suppression/ofq)
coefficient affect theq dependence of the growth rd&€q) in a different

range.
A(0) grang

A(Q)= 1T+ 2E (23

E. Comparison of &, estimated from the time-resolved SANS
with the viscoelastic lengtl§,. defined by with £, evaluated from an independent experiment

4 1/2 Let us now compare the value éf. experimentally esti-
§a77/\(0)) , (24 mated fromA(q) based on Eq(23) and the SANS relax-
ation experiments with that estimated from independent ex-

Eve=

wherey is the zero shear viscosity of the mixture ak(®) is
expressed by

A(0)=ppdg(DaNadg+DgNgda)vo/kgT, (25

and « is a dynamical asymmetry parameter defined by

DaNa—DgNg
a= .
DaNa¢g+DgNgoda

(26)

A(q) (mS J1 sec)

Here D; and N; are, respectively, the self-diffusion coeffi- 10} s al300.0K

cient and the polymerization index oth componen{i=A L%to theory

or B in this case¢in the blend. [ | = Pincus Theory
We fitted the experimental results with E&3) by using

A(0) and¢,. as adjustable parameters. The best-fitting results 0.01 B

are displayed by the solid lines in Fig. 12 together with the g (hm")

theoretical predictions based on the Pincus theory With FIG. 12. Q dependence of Onsager kinetic coefficient at 309.0 K
=Ry=9.5nm for Pl and 21.0 nm for DPB. The DO theory (gjrcleg and 298.1 K(squares The solid lines indicate the fitting
can well predict the experimental results AiGq). The esti-  results with the DO theoryEq. (23)] with A(0) and &, given in
matedA(0) and &, are also listed in Table Il§,e is much  Table II, while the broken lines indicate the prediction given by the
larger thanRy of DPB and PI, revealing that the viscoelastic Pincus theory for the symmetric blends, witli0) given in Table II
effects play a dominant role on the obsergegependence of andR,=9.5 and 21 nm, free from the viscoelastic effects.
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and Graessley37] measured the viscoelastic properties for

14} >
e 309.0K st polybutadiene. They found the angular frequengy,, at the
12t % B oy = maximum ofG” has the following relationship with the vis-
- - Pincus _ coelastic characteristic time,,
§ L N G Rg=21.0 nm 1
“'E g for DPB Wmax™ 0457'0 B (27)
L e AT ———
O T where 7, is defined by
O "
A To= 7732 (28)
2 et e———— yvith J2 being steady-_state comp[iance. H_ere this rglationship
8 s s s . is assumed to be valid for the viscoelastic behavior of DPB
0 0.5 1.0 15 20 25 8.0 and Pl in the blend. The, value estimated for DPB and PI
o (10°nm? in the blends are, respectively, 0:020.45=1.1x 1¢* and
, _ . 4.0 1/0.45=5.6x10 s at 298.0 K.
FIG. 13. R(q)/g” plotted againsgy® at 309.0 K(circles and Next, we need to know the relationship betwegnand

298.1 K (squares The solid lines are the best-fitting results with the characteristic time, ; for self-diffusion defined by
the DO theory withA(0) and &, given in Table I, while the broken ’

Ii_nes are the_results predic_:ted by the Pincus theory for the symmet- Tqi= Ré,i/Ds,i (i=DPB or P). (29)
ric blends, withA(0) given in Table Il andR;=9.5 and 21 nm, free
from the viscoelastic effects. Pearson, Fetters, and Graesdlag] measured the viscosity

_ _ ) and the self-diffusion coefficient of hydrogenated polybuta-
periments based on E¢4). The independent experiments giene(HPB) with varying molecular weight. From their data,
should lead to estimate the values gf A(0), and . We e can estimate the ratigy; / 7o; (i=DPB or P) as a func-
obtained =6.96x 10° Pas at 298.1 K from the dynamic tjon of molecular weight. We used,;/7o;=5.77, which is
viscoelastic measurements as a functioneofWe further  gptained for HPB withM,,= 1.0x 10, for the estimation of
need the self-diffusion coefficients of DPB and Pl in the .. . From the estimated;, and Ry, We obtained the
blends to estimater and A(0). Unfortunately, however, we  gelf_giffusivity for DPB (Dppg) and Pl Dp) from Eq.(27):
do not have the data of the self-diffusion coefficient of eachy | — g 9x 107 1°m?/sec and Dp=3.1x 10" m?/sec at
component. Thus, we estimated them from the dynamic visogg g k.
coel_astlc measurement of the blend at 298.1 K in this work. Substituting the estimated self-diffusivity of each compo-

Figure }4 shows the frequency dependence of the 10SSent into Egs.(25) and (26), we obtained corresponding
modglusG (w) of the DPB/PI blerldl at 298.0 K. The curve quantities that are defined hereafter(0).y and agy:
of G (w)Eas one peak ab=4.0s and one'shouIQer' at A(0)ee=1.7X10"2m%J's anda.y=1.37 at 298.0 K. The
w=0.02s " as indicated by the arrows in the figure, indicat- 5ig A(0)exp/A(O)eq is 3.7, which shows a fair agreement,
ing that there are two relaxation processes in the blend. Thg,gh not perfect, in view of the assumption and estimation
feislt relaxation process, assoc!ated with the maximum at 4-erors involved. Here\ (0)ey, is the valueA(0) estimated
s 7, corresponds to the relaxation of the PI component, whilg,om the DO theory by using Eq23). Finally, we estimated
the slow relaxation process, associated with the shoulder gtq viscoelastic length from Eq24), which we defined as
0.02 s'!, corresponds to the DPB component. Struglinskigve ca= 5.4 10 nm at 298.0 K. The ratiélye, exg/éve, caliS 1.2,
indicating that the DO theory well explains our experimental
result. This suggests that the viscoelastic effect ongtde-

140 l pendence of the Onsager kinetic coefficient dominates over

120 the effect of the normal modes on tliedependence of the

100 Onsager coefficient in thg range and time scale of our
= observation for this blend. The slight discrepancy between
& 80 the theoretical and experimental results may originate from
= errors involved by the estimation of the self-diffusion coef-
o 60 ficients from the viscoelastic measurements. In order to

40 avoid this uncertainty, we need to measure the tracer diffu-

sion coefficient of each component by using forced Rayleigh
20 scattering techniqugg9].
Ok . . s s .
0.01 0.1 1 10 100 IV. CONCLUSION
o (sec)

We measured relaxation processes of the concentration

FIG. 14. Frequency dependence of shear loss modBlifs) fluctuations in a single-phase state induced by rapid pressure
for DPB/PI blend at 298.0 K. The arrows indicate the peak or shoulchange for an asymmetric polymer blend DPB/PI by using
der inG"(w). time-resolved small-angle neutron scattering. The changes in
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the scattered intensity with time during the relaxation pro-with the fundamental parameters as obtained from viscoelas-
cesses were found to be approximated by the Cahn-Hilliardtic data, indicating that the viscoelastic effects arising from
Cook linearized theory. The CHC analysis yielded thde-  dynamical asymmetry between DPB and Pl give rise tajthe
pendence of the Onsager kinetic coefficidtq)=A(0)(1  dependence oA (q) in the length scale of our observation,
+q%L?) "1, which has they? dependence aL.>1 with  which is much larger than the radius of gyratigg or in the

L. being the experimentally assessed characteristic lengtia, range of our observation that is much smaller thaR,1/

The L. value thus evaluated was much larger than the radii
of gyration of DPB and PI, inconsistent with the Pincus
theory. This inconsistency is believed to be reasonable, be-
cause the Pincus theory is developed for the purely symmet- The authors are grateful to Professor H. Watanabe, Insti-
ric blends where the stress-diffusion coupling and hence thaute for Chemical Research, Kyoto University, for valuable
viscoelastic effects on the transport coefficient as elucidatediscussion on the viscoelastic measurement for evaluation of
by Doi and Onuki theory are absent. Thus the application othe self-diffusivity. This work was supported in part by a
the theory to the asymmetric blends itself is problematic forGrant-in-Aid from Japan Society for the Promotion of Sci-
a rigorous and quantitative analysis. The value is 1.2 ence(Nos. 12640392 and 13031058nd by the Sumitomo
times &, that is predicted by Doi and Onuki theory together Foundation.
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